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In this work a new projection basis for the substructure method is presented. This basis
uses new correction solutions reducing the numerical of co-ordinates used in the dynamic
analysis of a complex structure. For each connexion boundary, a &&boundary structure''
(whose characteristics are de"ned using a physical criterion) is associated. The correction
solutions proposed here use the normal modes of the &&boundary structure''. On this basis,
the size of problem and the compute time are reduced. Two structures are studied:
a rectangular plate and the planetarium of the science city of Tunisia. The results show that
the proposed method gives a good estimation of frequencies in comparison with the full
"nite element method results.
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1. INTRODUCTION

For a large system with many degrees of freedom (d.o.f. ), it is very di$cult and impractical
to solve the equation of motion of the complete system directly. Hence substructure
synthesis techniques have been used to evaluate the natural frequencies and mode shapes of
large and complex structural systems. A complete structure is treated as an assemblage of
substructures, and the motion of each substructure is represented by a set of substructure
modes. Using equations of force equilibrium and compatibility between substructure
interfaces, the substructures can be then coupled together.

Since Craig and Bampton's publication [1] several improvements of substructure
synthesis methods have been proposed by Hale and Meirovitch [2], Wang and Chen [3],
Leung [4] and Bourquin [5].

Gibert [6] reconsidered the method by using the impedance of a boundary. Chouieb and
Hassis [7] presented a general formulation that takes into account the rigid-body modes,
the impedance and the truncation of modes.

Jezequel et al. [8}10] presented a double-modal synthesis procedure. Generalized
coordinates are introduced and force and displacement distributions applied along the
boundary. This procedure introduces boundary d.o.f. associated with arbitrary boundary
displacement shapes. The coupling of substructures has been taken into account in order to
minimize the number of interface d.o.f.

In the same context, presented here is a substructure method synthesis using the response
of the structure to the modes of a &&boundary structure'' associated with the boundary as
correction solutions.
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2. PRESENTATION OF THE PROPOSED NEW SUBSTRUCTURE METHOD

2.1. GENERALITIES

Refer to the overall structure S composed of substructures. The ith substructure Si is
limited by the boundary C i. C i is divided into three parts: C i

u
is the clamped part of the

boundary, C
Fi

is the part of the boundary where forces are imposed and C ik is the
substructure interface between the substructures Si and Sk.

The material of the substructures is considered elastic and the dynamic problem is
analyzed by considering a few perturbation hypotheses.

2.2. EQUILIBRIUM EQUATIONS OF A SUBSTRUCTURE Si

For a substructure Si, the dynamic equations for the ith substructure can be written as
follows:

([K]!u2[M])
(i)
) [U]

(i)
"[T]

(i)
, (1)

where K and M are, respectively, the static sti!ness matrix and the mass matrix of the
substructure Si. U denotes the displacements and T the applied forces on the substructure
d.o.f.s. u denotes the ith substructure frequency of vibration.

The d.o.f.s are grouped in terms of interface substructure d.o.f.s (denoted by B) and
substructure non-interface d.o.f.s (denoted by I). Therefore, equation (1) can be written in
partitioned form as follows:
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2.3. PRESENTATION OF THE NEW PROJECTION BASIS

The new approach, like the Craig}Bampton approach, consists in developing the
displacement U on the basis of the elastic modes of the substructure clamped at the
interfaces C ik and correction interfaces modes called correction solutions. The present
approach proposes new correction solutions.

2.3.1. Fixed-interface mode representation

The "xed-interface normal modes of a substructure are determined by considering the
free vibration of the substructure whilst the boundary d.o.f.s are constrained. The natural
models wII, for clamped boundaries C ik, can be written as

([KII]!u2[MII])
(i)
) [wII]

(i)
"0. (3a)

The normalized normal modes WII are de"ned by

WII"
wII

wII )MII )wII
. (3b)

2.3.2. Correction solutions

The correction solutions are introduced to reduce the clamped consideration e!ects used
in the normal modes. Craig and Bampton proposed the following constraint modes: the
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constraint modes are considered from static considerations by applying a unit static
displacement at each interface d.o.f.s in turn whilst all of the other interface d.o.f.s are
constrained. The constrained mode shapes therefore describe the resulting displacement at
each of the non-interface d.o.f.s. Let [ws] denote the matrix whose column contains these
constrained modes for the ith substructure. The expression of the constrained modes is

[wS]
(i)
"C

ISS

wSID
(i)

with [wSI]
(i)
"!([KII]~1[KIS] [ISS])

(i)
. (4)

Note: The normal modes are generally normalized using the norm de"ned by equation (3b),
but the Craig and Bampton correction solutions for a #exible structure can be greater than
those for a rigid structure. Therefore, the matrices can be poorly conditioned and
a numerical problem can be produced (see reference [9]).

The di!erence between the Craig and Bampton and the present approach is in the
selection of the correction solutions. The correction solutions, proposed here, are
considered from static}dynamic considerations by applying the function wf as a static
displacement of the interface boundary d.o.f.s. The functions wf are de"ned by

([Kf]!u2[Mf]) [wf]"0, (5a)

where [Kf] and [Mf] are, respectively, the static sti!ness matrix and the mass matrix of
a structure called a &&boundary structure''. wf represent the normal modes of the boundary
structure.

The geometry of this boundary structure is the geometry of the boundary C ik. The
mechanical characteristics (E, Young's modulus, l, the Poisson ratio, A, cross-section, I,
moments of inertia, etc.) of the boundary structure will be de"ned in Section 2.5. The
characteristics of the boundary structure must be correctly chosen in order to represent the
motion of the substructure in the global structure.

The normalized normal modes are de"ned by

Wf"
wf

wf )Mf )wf
. (5b)

The correction solutions are determined by applying [Wf] at the interface boundary. The
non-interface correction solutions [WIf] can be expressed as
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For our basis, the normal modes and the correction solutions are normalized by the same
mass operator. In order to obtain well-conditioned matrices, criteria are proposed for the
choice of mechanical and geometrical characteristics of the boundary structure (see Section
2.5). The dynamic substructure method has been developed in order to reduce the number
of co-ordinates used in the dynamic analysis of complex problem. The size of the present
correction solutions is smaller than Craig and Bampton's. The size of the global problem is

f ¹he present approach: Number of normal modes]the number of substructure#
number of boundary normal modes]the number of boundaries.

f Craig and Bampton1s approach: Number of normal modes]the number of
substructure#number of boundary d.o.f.s]the number of boundaries.
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2.4. THE DEVELOPMENT OF THE DISPLACEMENT ON THE BASIS

For each substructure Si, the displacement (in the global structure) is written as
a development on the basis of the normal modes and the correction solutions:
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D"[w] ) [b]. (7)

As a consequence of such a transformation, the initial equations of motion (2) transform
to
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Note that the orthonormality properties of normal modes give
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2.5. EXAMPLE OF THE CHOICE OF BOUNDARY STRUCTURE CHARACTERISTICS

If the number of correction solutions is high, then the characteristics of the boundary
structure do not have large e!ects because only the geometrical shape of the mode is
important. But one of the advantages of this method is to reduce the size of the global
problem by reducing the number of correction solutions.

Two criteria for the choice of the characteristics of the boundary structure are proposed
here:

f The number of correction solutions must be &&su$cient'' to represent the real motion of
the boundary.

f Matrices of the global problem must be well conditioned.

The boundary normal modes must contain transverse, longitudinal and torsional modes.
This is easily obtained if all natural frequencies are in the same computational interval of
frequencies. Take the example of a hinged plate (¸

1
]¸) dividing into two parts (see

Figure 1). A hinged}hinged beam is associated with the boundary between the two
substructures of the plate. The characteristics of the boundary beam are: the cross-section
A, the moment of inertia I and the tortional constant J. The "rst transverse frequency, f ,
f



Figure 1. Subdivision of a plate in two substructures.
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torsional frequency f
t
and longitudinal frequency f
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Using the "rst criterion f
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By considering the second criterion, f
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where ( f
1
)
Plate

is the "rst frequency of the corresponding substructure.
To determine (A, I), one can impose a virtual section A and determine I. To determine

(E, o), one can impose a virtual Young's modulus and determine o.

2.6. COUPLING TECHNIQUE

The coupling technique in this section is not new. Equation (8) is written for each
substructure and the following linear connection relations between the substructures Si and
Sk are taken into account:

MUBN
(i)
!MUBN

(k)
"0, MFBN

(i)
#MFBN

(k)
"0. (11)

3. APPLICATION

To show the implementation of the proposed basis, two substructures are chosen. The
"rst structure is a rectangular plate and and second structure demonstrates the e!ectiveness
of the method even when boundary is a curved line.



TABLE 1

Frequencies of the plate

Mode (Hz) Frequency*Error Frequency*Error Frequency*Error

F
ad

4)525 * 7)266 * 12)312 *

F
nb1

4)526 0)02% 7)265 0)01% 12)331 0)15%
F
nb2

4)585 1)32% 7)472 2)83% 12)872 4)54%
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3.1. RECTANGULAR PLATE

The following results are derived for a rectangular plate with ¸
1
"20 m by ¸"10 m,

and a thickness h"0)20 m (see Figure 1). The plate is hinged at the boundaries. The
Young's modulus E"33]109 Pa, the mass density is o"2]103 kg/m3 and the Poisson
ratio l"0)3. The plate is divided in two substructures and two kinds of division are chosen,
as shown in Figure 1. Table 1 gives the "rst three natural frequencies obtained with this
new basis, compared to the full "nite element method results.

F
ad

is the natural frequencies obtained using a full "nite element method (FEM). F
nb1

and
F
nb2

are, respectively, the natural frequencies associated to the "rst and the second types of
division.

The size of the correction solutions is equal to:

f 66 (1 boundary]11 nodes]6 d.o.f.s) for the Graig and Bampton method;
f 6 (6 normal boundary modes]1 boundary) for the new basis.

A good estimation of frequencies is obtained by comparison with the full "nite element
method (with the same discretization).

3.2. COUPLED SHELLS}PLATES WITH CURVED BOUNDARIES: THE PLANETARIUM OF THE

SCIENCES CITY OF TUNIS (TUNISIA)

The planetarium of the sciences city of Tunis (Tunisia) is composed of a spherical shell
(with a diameter equal to 20 m) with three circular plates, representing the three stories.
A cylindrical shell, representing the escalator, passes through the three circular plates. The
"rst substructure is the spherical shell and the second substructure is made up of the three
circular plates and the cylindrical shell (see Figure 2).

The boundary structures are three circular beams associated with the circular connection
between the spherical shell and the circular plates. The modes used are the six rigid-body
modes and four deformation modes for each circular beam.

The "rst three frequencies obtained by the full "nite element method and the present
approach are given by Table 2.

The "rst and the third mode shapes, obtained through out approach, are shown in
Figure 3. The number of correction solution is

f 144 (3 boundaries]8 nodes]6 d.o.f.s) for the Craig and Bampton method;
f 12 (4 modes]3 boundaries) for the present basis.



Figure 2. Substructure of planetarium of sciences city of Tunisia. Substructure 1: a cylindrical shell with three
plates. Substructure 2: Spherical shell.

TABLE 2

Frequencies of planetarium

Mode (Hz) Frequency*Error Frequency*Error Frequency*Error

F
ad

4)189 * 4)189 * 11)285 *

F
nb

4)478 6)9% 4)478 6)9% 11)046 2)1%
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Figure 3. The "rst and the third mode shape of the planetarium of science city of Tunis, obtained by using the
new approach.
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4. CONCLUSION

To improve the modelling of each substructure in dynamic synthesis, a new basis has
been developed. The proposed new basis uses new correction solutions. Such correction
solutions are determined by applying the normal modes of the associated boundary
structure to the interface boundary. The characteristics of the boundary structure are
de"ned by using speci"c criteria.
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The new approach is applied to two cases: a rectangular plate and the planetarium of the
sciences city of Tunis (Tunisia). The results show that the proposed approach gives good
estimation of frequencies and has signi"cant computational advantage in comparison to the
Craig and Bampton method, mainly in reducing the size of global problem.

N.B.: CASTEM 2000 code of C.E.A. France is used for the computational results.
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APPENDIX: NOMENCLATURE

A cross-section
E Young's modulus
f
t

torsional frequency
F
ad

natural frequencies obtained using a full "nite element method (FEM)
h thickness of the plate
J torsional constant
Kf sti!ness matrix of the &&boundary''
Mf mass matrix of the &&boundary''
Si ith substructure
U displacement vector
C i

u
clamped part of the boundary

C ik interface between C i and Ck

u radian frequency
WII unitary normal modes
l the Poisson ratio
d.o.f.s degrees of freedom
f
f

"rst transverse frequency
f
tc

longitudinal frequency
F
nbi

nth natural frequencies associated with the ith type of division
I moment of inertia
K static sti!ness matrix
M mass matrix
S overall structure S
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T applied forces on Si

C i boundary of Si

C i
F

part of the boundary where forces are imposed
wII natural modes for clamped boundaries C ik

o the mass density
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